Just Draw It! Programming by
Sketching Storyboards

James A. Landay and Brad A. Myers

27 November 1995
CMU-CS-95-199

School of Computer Science
Carnegie Méellon University
Pittsburgh, PA 15213

Also appears as Human-Computer Interaction Institute Technical Report
CMU-HCII-95-106

Abstract

Current interactive user interface construction tools make it hard for a user interface designer to illustrate the behavior
of an interface. These tools focus on specifying widgets and making it easy to manipulate details such as colors,
alignment, and fonts. They can show what the interface will look like, but make it hard to show what it will do,
since they require programming or scripting in order to specify all but the most trivial interactions. For these
reasons, most interface designers, especially those who have a background in graphic design, prefer to sketch early
interface ideas on paper or on awhiteboard. We have developed an interactive tool called SILK that allows designers
to quickly sketch an interface using an electronic pad and stylus. However, unlike a paper sketch, this electronic
sketch isinteractive. The designer can illustrate behaviors by sketching storyboards, which specify how the screen

should change in response to end-user actions. This paper describes our storyboarding mechanism and provides design
ideas for a production-level system.

E-mail: landay@cs.cmu.edu
WWW Home Page: http://www.cs.cmu.edu/~landay
This research was sponsored by NCCOSC under Contract No. N66001-94-C-6037, ARPA Order No. B326.

The views and conclusions contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of NCCOSC or the U.S. Government.

KEYWORDS

User interfaces, design, sketching, gesture recognition, interaction techniques, pen-based
computing, SILK, visual languages, programming-by-demonstration.

INTRODUCTION

When professional designers first start thinking about a visual interface, they often sketch rough
pictures of the screen layouts. These screens are often tied together by simple storyboarding
techniques: the designer illustrates sequences of system responses to end-user actions by
annotating the sketches to indicate these relationships. Figure 1 illustrates a simple sketched
storyboard. The storyboard illustrates that the rectangle in the drawing window should be rotated
when the button at the bottom of the screenis clicked.

Sequencing between screens by using hand drawn storyboards is a technique that has been shown
to be a powerful tool for designers making concept sketches for early visualization [2]. In fact, all
but one of the 16 designers we surveyed [12] claim to use sketches or storyboards during the early
stages of user interface design. Storyboards are a natural representation, they are easy to edit, and
they can easily be used to simulate functionality without worrying about how to implement it. In
addition, the success of HyperCard has demonstrated that a significant amount of behavior can be
constructed by sequencing screens upon button presses.

We have developed an electronic sketching tool called SILK which alows designers to illustrate
these interface behaviors while the interfaces are still in their rough early stages. Last year we
reported on the basic widget sketching interface for individual screens [12]. This year we have
added a powerful storyboarding mechanism which allows a designer to specify the transitions
between screens. The main advantage of our tool over paper sketches is that it allows the
storyboards to come alive and permits the designer or test subjects to exercise the interface in this
early, sketchy state. Buttons and other widgets were active in our previous system (i.e., they
would give feedback when clicked), but they could not perform any actions. Our new
storyboarding component allows a wide variety of behaviors to be illustrated by sequencing
screens on mouse clicks.

SILK Storyboard

)

L

/

Figure 1: A storyboard that illustrates rotating a rectangle upon button presses.

SILK preserves the important properties of pencil and paper: a rough drawing can be produced
very quickly and the medium isvery flexible. SILK allows designersto quickly sketch an interface
using an electronic stylus. SILK then retains the “ sketchy” look of the components. The system
facilitates rapid prototyping of interface ideas through the use of common gestures in sketch
creation and editing. At each stage of the process the interface can be tested by manipulating it with
the mouse, keyboard, or stylus. Electronic sketches also have the advantages normally associated
with computer-based tools. they are easy to edit, store, duplicate, modify, and search.

This paper describes how SILK can be used effectively by user interface designers to illustrate
sequencing behaviors. The first section describes some of the problems associated with using
current tools and techniques for specifying behavior. Next, we give an overview of SILK. In the
third section, we describe the design and implementation of SILK’s storyboarding mechanism.
Next we describe some potential extensions to our system. Finally, we summarize the related work
and the status of SILK to date.

DRAWBACKS OF EXISTING TOOLS

One of the mgjor problems with existing user interface construction tools is the focus they place on
the finished details of a user interface like color and alignment, rather than on the overall layout,
structure, and interaction. This is significant during the early stages of development when it is
important to quickly explore a wide range of designs. This focus problem is discussed in detail
elsewhere [22, 1, 12].

When it comes to supporting interaction, existing tools fall short of theideal. Most user interface
builders, such as the NeXT Interface Builder [17] and Visual Basic, require the use of
programming languages in order to specify any interaction beyond that of individual widgets.
Design tools such as Director and HyperCard allow the sequencing of screens, and although they
use direct-manipulation methods to specify these sequences, these methods lack the fluidity of
paper-based storyboarding. For anything but the most simple sequences, these tools require the
use of scripting languages.

Requiring the use of programming or scripting languages is not realistic for our application: the
rapid prototyping of early user interface ideas by user interface designers. We have tried to design
asystem that alows the rapid illustration of a significant amount of interaction by sketching alone.

Due to the lack of good interactive tools, many designers use low-fidelity prototyping techniques
[19]. These techniques involve creating mock-ups using sketches, scissors, glue, and post-it
notes. One of the biggest drawbacks to using low-fidelity prototypes is the lack of interaction
possible between the paper-based design and a user, which may be one of the designers at this
stage. In order to actually see what the interaction might be like, a designer needs to “play

4.

computer” and manipulate several sketchesin response to auser’s verbal or gestural actions. Our
system performs the screen transitions automatically in response to a user’s actions. This allows
more realistic testing of rough interface ideas. In addition, rather than being thrown out like paper
prototypes, these el ectronic specifications may be used to automatically generate code to implement
the transitionsin the final system.

DESIGNING INTERFACES WITH SILK

Sketches are often used to explore the overall layout and structure of interface components, rather
than to refine the detailed look-and-feel. Designers, who may also feel more comfortable sketching
than using traditional palette-based interface construction tools, use sketches to quickly consider

various interface ideas. Rather than just sketching many unrelated screens, designers often build up
storyboards from these sketches. By numbering the screens, drawing arrows on them, and

attaching annotations, a designer can describe the major transitions that occur between screens
when a user manipulates the interface. A desire to iterate quickly leads designers to use paper-

based sketches for this type of work.

Designers need tools that give them the freedom to sketch rough design ideas quickly [21], the
capability to specify transitions between screens and behavior of interface elements, the ability to
test the designs by interacting with them, and the flexibility to fill in the design details as choices
are made. SILK was designed with these needs in mind. The rest of this section reviews the major
components of SILK [12] and explains how it is used in practice.

Sketching Interfaces

SILK blends the advantages of both sketching and traditional user interface builders, yet it avoids
many of the limitations of these approaches. Our goal was to make SILK’s user interface as
unaobtrusive as pencil and paper. In addition to providing the ability to rapidly capture user interface
ideas, SILK enables the designer to move quickly through several iterations of a design by using
gestures to edit and redraw portions of the sketch. Changes and written annotations made to a
design over the course of a project can also be captured and reviewed. Thus, unlike paper
sketches, SILK sketches can evolve without forcing the designer to continually start over with a
blank date.

For individual screens, SILK triesto recognize user interface widgets and other interface elements
asthey are drawn. Although the recognition takes place as the sketch is made, it is unintrusive and
users will only be made aware of the recognition results if they choose to exercise the widgets. As
soon as a widget has been recognized, it can be exercised. For example, the “elevator” of the
sketched scrollbar in Figure 1 can be dragged up and down and will be confined to the enclosing

rectangle.

Specifying Behavior

Easing the specification of the interface layout and structure solves much of the design problem,
but adesign is not complete until the behavior has also been specified. Unfortunately, the behavior
of individual widgetsisinsufficient to test a working interface. For example, SILK knows how a
button operates, but it cannot know what interface action should occur when a user presses the
button. This is specified using the new storyboarding mechanism described in this paper.
Storyboarding allows the specification of the dynamic behavior between widgets and the basic
behavior of new widgets or application-specific objects, like a dialog box appearing when a button
IS pressed.

Our storyboarding technique uses a visual notation that is drawn on and between copies of the
interface screens. Using a notation of marks that are made on the sketch is beneficial for several
reasons. First, these sketchy marks are similar to the types of notations that one might make on a
whiteboard or a piece of paper when designing an interface. For example, sequencing is expressed
by drawing arrows from buttons to screens that appear when the button is pressed (see Figure 2).
In addition, we can now use the same visual language for both the specification of the behavior and
the static representation that can be later viewed and edited by the designer. We believe that this
static representation is very natural and easy to use, unlike the hidden and textual representations
used by other systems, such as HyperCard and Visual Basic.

SILK Storyboard | 2 | 7|

o &

\

)
/ (&> =)

N 1 -~
]]

LLLn

Figure 2: Make a dialog box appear when the button is pressed.

Run Mode

In addition to editing and creating new objects in sketch mode, SILK aso supports run mode. Run
mode, which can be turned on from the SILK control panel, alows the designer to test the
sketched interface. For example, as soon as SILK recognizes the buttons shown in Figure 1, the
designer can switch to run mode and operate the buttons by selecting them with the stylus or
mouse. The buttons will highlight when held down. With our new storyboarding component, the
system will also make transitions to new screens when the buttons are pressed.

Transformation

When the designer is satisfied with the interface, SILK can replace the sketches with real widgets
and graphical objects; these can take on the look-and-feel of a specified standard graphical user
interface, such as Motif, Windows, or Macintosh. The transformation process is mostly
automated, but it requires some guidance by the designer to finalize the details of the interface
(e.q., textual labels, colors, etc.). At this point, programmers can add callbacks and constraints
that include the application-specific code to complete the application.

SILK STORYBOARDS

We have chosen a simple model for our storyboarding language. Our visual language has two

types of objects, screens and arrows. Each screen is a sketch of an interface in a particular state.

For example, Figure 1 illustrates three screens that differ in only the orientation of the rectanglein
the drawing window. Arrows connect objects contained in one screen with a second screen. The
arrow indicates that when the object in the first screen is manipulated (our current model islimited
to mouse clicks), the system should display the second screen instead of the first. For example, the
arrowsin Figure 1 indicate that when the user clicks on the button at the bottom of the screen, the
user should see the rectangle in its new (rotated) orientation.

Examples

SILK storyboards make it easy to illustrate several common interface behaviors. In this section we
present several examples. In Figure 1 the designer hasillustrated a repeating sequence of rectangle
rotations. Each time the button is clicked, the rectangle in the drawing window rotates 60 degrees.
This example also shows that the transitions can loop back to the screen they started on. An

important point about this example is that it shows that a designer can illustrate a behavior (i.e.,

rotation) that the underlying tools, SILK and the toolkit it uses, do not even support. The
designer’s knowledge and creativity allow the definition of behaviors that the underlying system

does not support.

Figure 2 illustrates bringing up adialog box on top of the sketched drawing window. This example
isinteresting since the designer is able make the dialog box opague so that it hides any objects it
may appear over. This technique can aso be used for illustrating pull-down and pop-up menus. An
alternative design we have considered isto have SILK recognize these types of widgets and set this
property automatically.

SILK Storyboard [JL

[[~

= L
=
<

Figure 3: Scaling a circle with selection handles.

Figure 3 illustrates a sequence in which the user can select acircle by clicking onit. The circle can
then either be doubled or shrunk in half by clicking on the buttons at the bottom of the screen. This
example aso lets the designer illustrate the feedback of selection handles.

Finally, Figure 4 illustrates how a designer could illustrate the operation of an arbitrary palette of
tools. In this example the user is able to create any of three basic objects in a drawing window by
first clicking on the object in the palette and then clicking in the drawing window.

¥ =lie)

L

SR

| e
v

Figure 4: A partial screen tree for a simple drawing tool. Clicking on a palette item changes the state and then
clicking on the background creates an object of the right type. The bottom button deletes the object.

Screen Trees

SILK’ s storyboarding model implies that a program can be thought of as atree (see Figure 4). The
nodes of the tree are the different states of the program (i.e., screens) and the arcs out of each node
represent the end-user actions that cause state changes. In order to fully specify a program, the
designer would have to specify the entire tree. However, we do not believe this is a major
drawback of our model, since storyboarding is generally used for illustrating important sequences

8.

in the interface, rather than for specifying an entire interface. For those that require more power,
we propose several inferencing techniques in the next section which vastly reduce the amount of
work needed to specify the screen tree.

The important sequences in an interface can be thought of as partia paths through the tree in Figure
4. For example, the middle path illustrates the sequence in which the user creates a rectangle and
then deletes it by clicking on the delete button. By illustrating afew partial paths, the designer can
specify enough of an interface for the design team to quickly consider several possible interactions.

Storyboard Construction

The system was designed to make specifying sequencing paths easy. The designer constructs
storyboards by sketching screens in the SILK sketching window. These screens can be sketched
with a pen-based graphics tablet or a mouse. Screens are then copied to the storyboard window. At
this point, the original screen can be modified in the sketch window to show how its state might
change. After this, the new screen is also copied to the storyboard window. Now, the designer can
start drawing arrows in the storyboard window that indicate screen sequencing or more screens can
be produced.

The arrows can be drawn from any widget, graphical object (e.g., decorations), or the background
to another screen. Thus, the designer can cause transitions to occur when the user clicks on any of
these items. The arrows show an anchor point on the object they were drawn from and an
arrowhead on the screen they are drawn to. Unlike the arrows in many visual dataflow languages
[20] and CAD tools, our storyboarding arrows are free-form. This unconstrained control permits
the designer to avoid some of the “rats-nest” problems associated with these other systems, where
lines cross at 90 degree angles and are thus hard to follow.

Testing the Interaction

When the designer is ready to test the specified interaction, she can switch to run mode. At this
point, the designer must specify which screen will be theinitial screen to start the interaction. This
is accomplished by selecting a screen in the storyboard window and copying it back to the sketch

window. Now the designer or an end-user can start interacting with the sketch and it will make the
proper transitions as defined by the visual program displayed in the storyboard window. Each time
the user clicks on an object that has the source of an arrow attached to it, the system will replace the
current screen with the screen attached to the head of the arrow. For example, the behavior

illustrated by Figure 1 will show a progression of rectangle rotations when the user clicks on the

button.

Algorithm Animation

In order to allow the designer to debug their storyboards, we have supplied some feedback
mechanisms that are displayed while in run mode. First, the currently active screen (i.e., the one
being displayed in the sketch window), is always highlighted in the storyboard window. This
allows the designer to know the current state of the system. Second, the object that caused the last
transition to the current screen is highlighted along with the arrow leading to the current screen. A
designer can use these mechanismsto help check that her visual program isworking properly.

Implementation

As an outgrowth of our simple storyboarding model, the implementation is also quite
straightforward. Every sketched widget and screen is given aunique ID. When a screen is copied
from the sketch window to the storyboard window, the objects are copied along with their IDs.

When the system is put into run mode, a screen transition table is built by examining the arrows
along with the objects and screens they connect. For each arrow in the storyboard the system
creates a transition entry that contains the object’s ID along with the origination and destination
screen IDs. When the user clicks on an object in the sketch window, the system checks whether
that object has atransition defined on it by looking it up by its ID and the ID of the current screen.
If atransition is defined, the system copies the screen specified by the destination ID to the sketch
window. Thus a program executes upon each input event by examining the transition table and
copying the specified screen.

This implementation could be made more efficient (and exhibit less screen flicker) by checking for
differences between the two screens and storing in the transition entry the necessary operators to
effect the change. Instead of the outright replacement of objects that change, we could have the
transition modify “interesting” object parameters, such as. visibility, left, top, width, height, and
scale. Then when atransition fires, the system would only change parts of the screen rather than
make an entirely new copy.

EXTENDING STORYBOARDS

Our current model of storyboard sequencing is sufficient for many applications, but falls short
when the designer wishes to specify a complete interface. There are several ways we can extend
our basic model to increase the power of this specification style.

Parallel Storyboards

Currently the system supports multiple paths through an interface screen tree (as seen in Figure 4),

but only one of these paths can be followed at atime. An obvious extension of thisisto implement

the difference checking agorithm mentioned above and also alow multiple paths to be active at the

same time. Thisimplies that more than one state could be active, but only one in each independent
10.

path. Thiswould allow the description of paths for manipulating different objects (for example the
shapes in the palette of Figure 4) and allow those objects to be visible on the screen at the same
time. For example, if we defined the two paths given in Figure 5, we would be able to produce the
screen shown in Figure 6 by creating a rectangle followed by a circle or vice-versa. This allows the
size of the specification to grow as the product of the number of objects and the number of

supported operations on them. Thisis a significant improvement on our current model in which the
specification grows exponentialy.

=) Six Soyeems)
j o \@\W,Dm
(=
=) (=) (=)
IRYC <!l
BE S
| - = =)

Figure 5: Parallel storyboard paths that allow the creation of circles and rectangles in any order.

|
=1 SILK Sketch ==

?D D
L
= _

Figure 6: A drawing that could be created with the parallel storyboards defined in Figure 5.

Inferencing Techniques

Another way in which we can make storyboards more expressive is by applying inferencing

techniques to them. Programming-by-demonstration (PBD) is a technique in which one specifies a

program by directly operating the user interface [3, 15]. The system then triesto infer a program to

implement the interaction. Our storyboarding system is similar to a PBD system. In the sketch
11.

window we specify the layout and structure of the interface, while in the storyboard window we
demonstrate possible end-user actions and show how the layout and structure should change in
response.

In our current system there is no inferencing involved. All actions and responses must be specified
by the designer. Consider the rotation case illustrated in Figure 1. A PBD system could take the
two rotation steps shown and try to infer the amount of rotation to apply on any subsequent button
press. The PBD system could then indicate this inference by replacing the screens in question by
one compound screen in which the inference is made explicit. Double clicking on the compound
screen would display the original sequence as drawn. This would save both the designer’s time
and lots of valuable screen space.

Another way in which we can use inferencing is to alow the system to infer that operations applied
to one type of object may also be applied to other objects. For example, in order to support scaling
for both rectangles and circles the designer currently needs to specify two separate sequences
operating on both types of objects. If the system could infer that scaling is simply the modification
of a parameter of the selected object, then one example sequence would allow scaling on all
objects. Again, thiswould save a considerable amount of designer time and storyboard space.

A critical problem with PBD techniquesisthe lack of a static representation that can be later edited.
Marquise [16] and Smallstar [7] use a textual language (a formal programming language in the
latter case) to give the user feedback about the system’s inferences. In addition, scripts in these
languages can then be edited by the user to change the “program”. This solution is not acceptable
considering that the intended users of SILK are user interface designers who generally do not have
programming experience. We believe that our visual notation can be extended to show the
inferences that a PBD system might make.

It may also be useful to defer much of the inferencing until transformation time, thus preserving the
fluidity of the sketching and brainstorming phases. At this point, PBD might also be used to help
construct a call-back skeleton from the transitions.

Storyboard Space Saving Techniques

One of the mgjor problems with any visual language is the large amount of screen space they
require as compared to textual languages. Besides PBD, there are several other space-saving
techniques we have considered to help overcome this problem.

The first major problem we have encountered is the “rats-nest” of arrows connecting screens. As
an interface gets more and more complex, these arrows become hard to follow. This problem is
solved in many CAD systems by performing automatic routing algorithms. This is especially
useful after moving or deleting screens in the storyboard. We intend to allow multiple views of the

12.

storyboard window. For example, a designer should be able to specify that she wishesto only see

arrows coming into a particular screen, out of a particular screen, or out of a particular object.

Another view might only show screens that are reachable from the current screen or selected

arrow. We believe that user-controlled routing and editing of free-form arrows, along with multiple
views, can solve many arrow related problems.

The second major problem we have seen involves the size of the storyboarding panels. Currently
when we copy a screen to the storyboard window, it is displayed at 50% of its original size. It may
be useful to allow the designer to vary this parameter for more control over the space. It may aso
be nice to automatically vary the scale among different panels according to which part of the
interface the designer is working on. This technique is similar to the use of fisheye views in
visualization tools[5].

Another technique for saving on storyboarding space is to only show relevant changes to the
screens, instead of the entire screens. In the rotation example (see Figure 1), the second storyboard
screen might only show the rotated rectangle without the palette, window, or button. This is
similar to some of the techniques used in Chimera [11] and systems based on graphical rewrite
rules. Another way to conserve storyboard space is to try to compress multiple changes into a
single screen. The Pursuit [13] system uses similar techniques. We could do that with our system
if arrows were drawn not just to the next screen, but to the object that should be modified by the
specified action. Thus, multiple arrows could arrive on distinct objects in the same screen to
illustrates multiple state changes.

Additional Events, Animation, and State Matching

The only event the current system supports is clicking on widgets or graphical objects. We could
specify more complete user interfaces by supporting dragging, drag and drop, double clicking,
timer events, and typing. In addition, a null event arrow that would match on any user event that
did not match on the current screen would make error handling easier. Allowing arrows to be
annotated with event types could support some of these additional events. We envision supporting
this by having a palette of arrow types in the storyboard window (e.g., a mouse icon for single
click, two mice for double click, a clock for timer events, etc.) The palette would allow the
designer to select the current mode for the arrows drawn in the storyboard window. Arrows of
different types would be distinguished by distinct colors and possibly line styles.

The timer event is especially interesting in that it would allow designers to quickly mock-up
multimedia applications that have animation or video by specifying a few key frames that SILK
would automatically transition between when the timer event occurred. Professional designers we
have spoken with have requested this feature.

13.

Another limitation of the current model isthat it only supports checking that an event takes place on
aparticular object. It would be useful to have atransition that occurs conditionally on the object in
guestion being in a particular state. For example, we may want a mouse click on a check box to
only cause atransition if the box was previously unchecked.

RELATED WORK

We have drawn inspiration from several different systemsin our design of SILK’s storyboarding
mechanism. HyperCard's in-place “card” transitions were a major influence on our transition
scheme. Unlike HyperCard, SILK’s transitions are visible and several can be viewed at once.
Thus, our storyboards may be easier to understand and edit.

Marks or symbols layered on top of the interface are used for feedback indicating graphical
constraints in Briar [6] and Rockit [9]. In Rockit, the marks kept the user informed of the current
inference of the system. SILK differsin that the designer makes the marks, rather than the system.

Our storyboarding mechanism is based on specifying screen shots from before and after an end-
user action. Chimera [11] and Pursuit [13] are both based on the before-and-after cartoon strip
metaphor. SILK differsin that it allows the designer to specify what these actions are, rather than
trying to infer this information from examples, asis done in Chimera and Pursuit. These systems
are successful doing inferencing in their domains, graphical editing and graphical shell file
operations, respectively.

SILK storyboards are similar to finite state transition diagrams. These diagrams have been used for
Ul specifications in the past, but have fallen into relative disuse because of problems with the
exponential blow-up of the specification and an inability to handle the dynamic nature of direct
manipulation user interfaces. Parallel storyboards try to attack the first problem in away that is
similar to Jacob’s use of independent embedded state diagrams per object [8]. In addition, we do
not believe designers will try to use SILK to specify an entire interface, but instead will concentrate
on simulating key sequences.

Two other relevant end-user programming systems are Agentsheets [18] and KidSim [4]. Both of
these systems use graphical rewrite rules to allow the creation of dynamic ssimulations. The rewrite
rules specify agraphical pre-condition that must be met. When it is met by the state of the screen,
the screen state is changed by the graphical action specified in the rewrite rule. These systems
focus on animated simulations, whereas SILK concentrates on end-user actions and the changes to
the Ul state that should occur upon those actions.

Kramer’s sketching system [10] is similar in its goa of supporting a very fluid free-form design
system. Our systems differ in that SILK concentrates on user interfaces and alows the sketches to

14.

behave, whereas Kramer’s system allows attaching many different “dynamic interpretations’ to
sketches, but supports only alimited set of actual interpreters.

Finally, Wong's work on scanning in hand-drawn interfaces was the major impetus for starting
our work in this area [22]. Wong attached behaviors to her sketches with Director, whereas we
give designers a tool that allows them to create both the look and behavior of these interfaces
directly with the compuiter.

STATUS

SILK runs under Common Lisp on both UNIX workstations and the Apple Macintosh with a
Wacom tablet attached. It is implemented using the Garnet User Interface Development
Environment [14]. SILK supports the recognition and operation of several standard widgets and
the transformation of the sketch to an interface with a Motif look-and-feel. The storyboarding
mechanism supports the specification of screen trees, as described previously. SILK does not
currently support parallel storyboards, inferencing, or any of the proposed screen space saving
techniques. In addition, the system does not support any end-user actions other than clicking with
the mouse. Thus, although the sketchy scrollbar in Figure 1 can be moved up and down, the
designer cannot specify how much of the associated data should be scrolled.

We plan for design studentsto use SILK in auser interface design course to see how it performsin
practice. In addition, we will be releasing the system for general usein early 1996. In addition to
collecting anecdotal comments from designers, we hope to follow a small set of designers
intensively before and after using SILK to observe how their design methodology changes after
using the system.

CONCLUSIONS

SILK storyboarding is a key step to a future in which much of a user interface will be illustrated,

specified, and tested by a user interface designer. Through questionnaires and site visits we have
found hand-drawn storyboards to be a common tool used to illustrate behavior. We have designed
our tool only after surveying the intended users of the system. These designers have reported that

current user interface construction tools are a hindrance during the early stages of interface design.
Our interactive tool overcomes these problems by allowing designers to quickly sketch an interface
using an electronic stylus. Unlike paper sketches, our electronic storyboards allow the designer or
test subjects to interact with the sketch before it becomes afinalized interface. We believe that an

interactive sketching tool will enable designers to produce better quality interfaces in a shorter
amount of time than with current tools.

1 For more information see the Web page of the first author.

15.

ACKNOWLEDGMENTS

The authors would like to thank David Kosbie, Tom Moran, and Marc Ringuette for their helpful
comments on thiswork. Finally, we would like to thank Richard McDaniel, Phoebe Sengers, and
Bradley Vander Zanden for help with technical writing.

REFERENCES

1. Black, A. Visible planning on paper and on screen: The impact of working medium on
decision-making by novice graphic designers. Behaviour & Information Technology 9, 4
(1990), 283—-296.

2. Boyarski, D. and Buchanan, R. Computers and communication design: Exploring the
rhetoric of HCI. Interactions 1, 2 (April 1994), 24-35.

3. Cypher, A. Watch What | Do: Programming by Demonstration, MIT Press, Cambridge, MA
(1993).

4. Cypher, A. and Smith, D.C. KidSim: End user programming of simulations. In
Proceedings of CHI '95: Human Factors in Computing Systems, Denver, CO, 1995, pp.
27-34.

5. Furnas, G.W. Generalized fisheye views. In Proceedings of ACM CHI '86 Conference on
Human Factors in Computing Systems, Boston, MA, 1986, pp. 16-23.

6. Gleicher, M. and Witkin, A. Drawing with constraints. The Visual Computer 11, 1 (1995),
To appear.

7. Habert, D.C. Programming by Example, Ph.D. dissertation, Computer Science Division,
EECS Department, University of California, Berkeley, CA, 1984.

8. Jacob, R.J.K. A specification language for direct-manipulation user interfaces. ACM
Transactions on Graphics 5, 4 (October 1986), 283-317.

9. Karsenty, S., Landay, JA., and Weikart, C. Inferring graphical constraints with Rockit. In
HCI '92 Conference on People and Computers V11, British Computer Society, September
1992, pp. 137-153.

10. Kramer, A. Translucent patches — dissolving windows. In Proceeings of UIST '94. Seventh
Annual Symposium on User Interface Software and Technology, Marina Del Rey, CA,
1994, pp. 121-130.

11. Kurlander, D. Graphical Editing by Example, Ph.D. dissertation, Department of Computer
Science, Columbia University, July 1993.

12. Landay, JA. and Myers, B.A. Interactive sketching for the early stages of user interface
design. In Proceedings of CHI '95: Human Factors in Computing Systems, Denver, CO,
May 1995, pp. 43-50.

13. Modugno, F. and Myers, B.A. Graphical representation and feedback in a PBD system. In
Watch What | Do: Programming by Demonstration. MIT Press, Cypher, A., Ch. 20, pp.
415-422, Cambridge, MA, 1993.

14. Myers, B.A., Giuse, D., Dannenberg, R.B., Vander Zanden, B., Kosbie, D., Pervin, E.,
Mickish, A., and Marchal, P. Garnet: Comprehensive support for graphical, highly-
interactive user interfaces. IEEE Computer 23, 11 (November 1990), 71-85.

15. Myers, B.A. Demonstrational Interfaces: A step beyond direct manipulation.|EEE Computer
25, 8 (August 1992), 61-73.

16. Myers, B.A., McDaniel, R.G., and Kosbie, D.S. Marquise: Creating complete user

interfaces by demonstration. In Proceedings of INTERCHI '93: Human Factors in
Computing Systems, Amsterdam, The Netherlands, April 1993, pp. 293-300.

16.

17.

18.

19.

20.
21.

22.

NeXTSep and the NeXT Interface Builder, NeXT, Inc., Redwood City, CA, 1991.

Repenning, A. AgentSheets. A tool for building domain-oriented dynamic, visual
environments, Ph.D. dissertation, Dept. of Computer Science, University of Colorado at
Boulder, 1993.

Rettig, M. Prototyping for tiny fingers. Communications of the ACM 37, 4 (April 1994),
21-27.

Prograph, TGS Systems, San Francisco, CA, 1992.

Wagner, A. Prototyping: A day in the life of an interface designer. In The Art of Human-
Computer Interface Design. Addison-Wesley, Laurel, B., pp. 79-84, Reading, MA, 1990.

Wong, Y.Y. Rough and ready prototypes: Lessons from graphic design. In Short Talks
Proceedings of CHI '92: Human Factors in Computing Systems, Monterey, CA, May 1992,
pp. 83-84.

17.

18.

